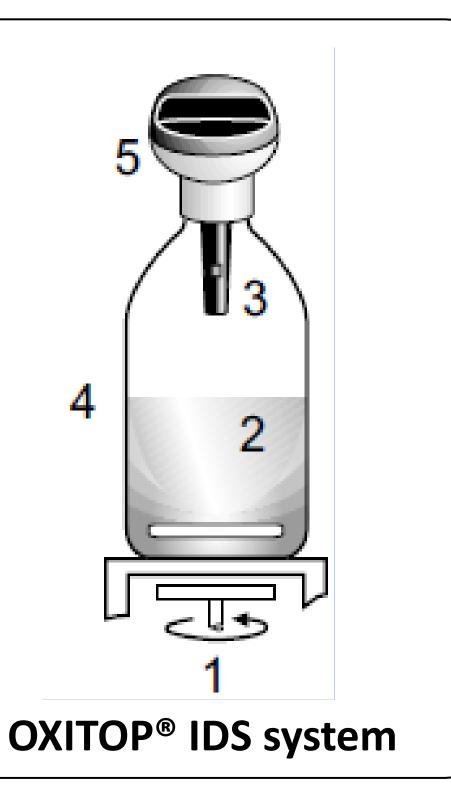
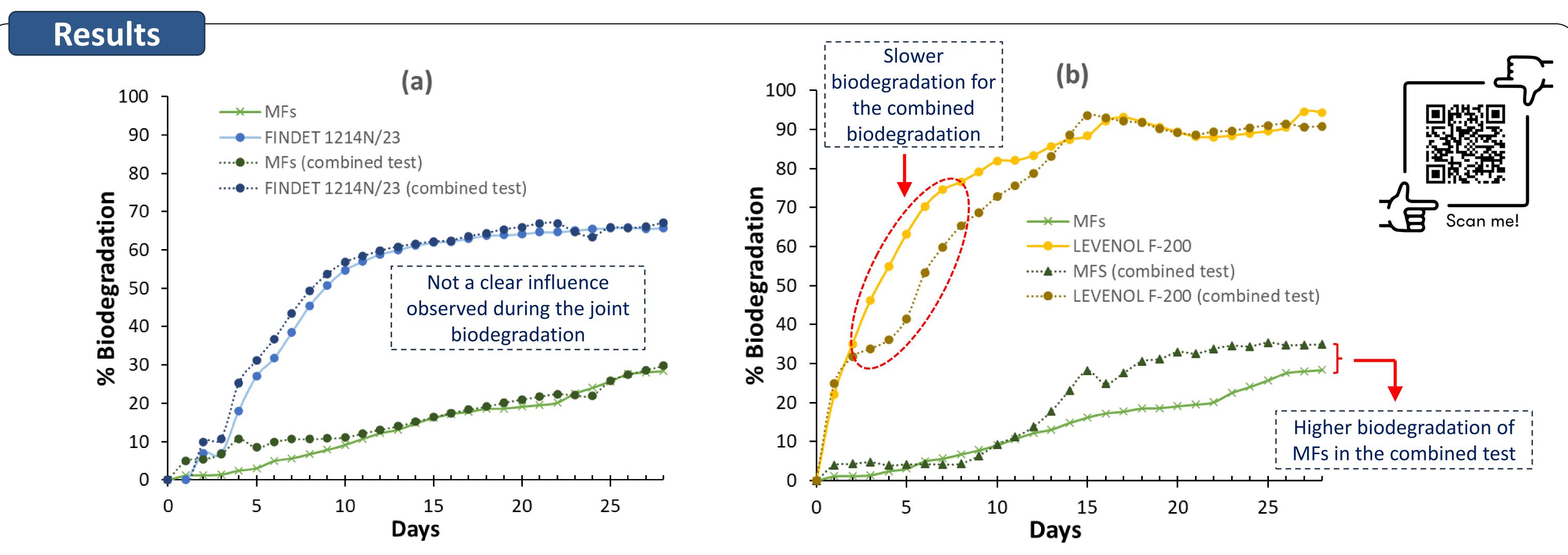


JOINT AEROBIC BIODEGRADABILITY OF POLYESTER AND COTTON MICROFIBERS AND LAUNDRY SURFACTANTS

García-López A. I.*, Ríos F*., Lechuga M., Vicaria J. M., Luzón G., Núñez J.

Chemical Engineering Department, University of Granada, Faculty of Sciences, Avda. Fuente Nueva, 18071, Granada, Spain.


*Corresponding authors: rios@ugr.es; anaigl@ugr.es


Introduction

During each wash of clothes, millions of natural and plastic microfibers (MFs) are released due to friction generated during the washing. Up to 20% of these cannot be captured in WWTP and are released into aquatic environments. Several studies have remarked the environmental problems caused by MFs, which are toxics for some aquatic organisms and persistent in the environment [1]. Due to its larger surface area and hydrophobic properties they can adsorb toxic surface- compounds, while can be ingested by aquatic organisms becoming part of the trophic chain. MFs are mainly found in wastewater in combination with surfactants which pose a severe environmental threat to the ecosystems [2]. It is unclear how surfactants can affect to the biodegradability of MFs, or how MFs can affect the biodegradability of surfactants. In this work we study the aerobic biodegradation of microfibers from polyester/cotton fabric in combination with non-ionic surfactants from laundry products.

Materials and Methods

- \circ Microfibers: A commercial fabric composed by 65:35 polyester/cotton was was ground using cryogenic milling (Freezer Mill 6870) to obtain microfibers with an average length of 400 μm and 10 μm width.
- Surfactants: two commercial non-ionic surfactants supplied by Kao Corporation (Tokyo, Japan) were tested. The fatty alcohol ethoxylated, FINDET®1214N/23 (a) and the polyoxyethylene glycerol ester LEVENOL® F-200 (b).
- Aerobic Biodegradation test: conducted following the OECD 301F method and using the OXITOP®-IDS system. Activated sludge from the local WWTP served as the source of microorganisms. Substances were tested in duplicate at 50 mgThOD/L during 28 days at 22°C in the dark.

The surfactants FINDET 1214N/23 and LEVENOL F-200 are aerobically biodegradable, as they surpass the 60% threshold described by the OECD 301F method. The MFs from the polyester-cotton fabric (65:35) are not aerobically biodegradable, reaching only a percentage close to 30%, which correlates with the cotton content in the MFs.

Conclusions

- MFs from the cotton-polyester fabric are not biodegradable, and the biodegradation percentage can be attributed solely to the cotton fraction.
- The presence of MFs can affect the biodegradation course of LEVENOL F-200, while this surfactant also promotes the mineralization of the biodegradable part of the MFs.

References

- [1] Zambrano, M.C., Pawlak, J.P., Daystar, J., Ankeny, M., Cheng, J.J., Venditti, R.A. Microfibers generated from the laundering of cotton, rayon and polyester based fabrics and their aquatic biodegradation. (2019), Marine Pollution Bulletin, 142, 394-407.
- [2] Ríos, F., Lobato-Guarnido, I., Fernández-Serrano, M. Antagonistic toxic effects of surfactants mixtures to bacteria *Pseudomonas putida* and marine microalgae *Phaeodactylum tricornutum*. (2023), Toxics, 11, 344.

This work has received the financial support provided by the University of Granada, the Andalusian Government and by the European Regional Development Fund (ERDF) "A way of making Europe" with the research projects PPJIA2022-27 and C.ING.122.UGR23.